Cooperative Caching for Pub/Sub System in Edge Computing

Tomoya Tanaka, Advisor: Prof. Dr. Tomio Kamada

Kobe Univerisity

Computer Science and Systems Engineering Department

Introduction

Edge Computing

Cache content on geographically dispersed edge servers \rightarrow Access to content with low-latency can be realized

Content caching on edge servers \rightarrow Resource constraints

We realize immediate content sharing among specific clients

A system that can transfer content to specific destinations only [5, Nagato 2020]

Characteristics

1. Pub/Sub Distribution using cache

The client connects to a fixed server (home server) and performs Publish/Subscribe.

2. Consistency

Synchronize content state between servers

Make content sharing real-time considering resource constraints

A system that can transfer content to specific destinations only [5, Nagato 2020]

Characteristics

1. Pub/Sub Distribution using cache

The client connects to a fixed server (home server) and performs Publish/Subscribe.

2. Consistency

Synchronize content state between servers

Make content sharing real-time considering resource constraints

A system that can transfer content to specific destinations only [5, Nagato 2020]

Characteristics

1. Pub/Sub Distribution using cache

The client connects to a fixed server (home server) and performs Publish/Subscribe.

2. Consistency

Synchronize content state between servers

Make content sharing real-time considering resource constraints

Problem and Goal

cache and bandwidth can be over-consumed as the number of users increases

Case Study

Policy : Minimize delay for content transmission by efficient resource use

1. Formulation of delay for content delivery

(Original modeling for interactive content sharing among clients)

<u>penalties</u>

- Exhaustion of capacity on edge servers
- work congestion
- Distance between a client and a home server

$$D = \frac{1}{M} \sum_{l=1}^{L} \sum_{m=1, c_m \in \mathcal{C}_l}^{M} \frac{1}{|\mathcal{U}_m|} \sum_{n=1}^{|\mathcal{U}_m|} (t_{mn} r_l \alpha + \psi(|\mathcal{C}_l|)(|\mathcal{C}_l| - C_{max})\beta + d_{ml} \gamma)$$

2. Algorithm Construction which minimize delay D

Policy : Minimize delay for content transmission by efficient resource use

1. Formulation of delay for content delivery

(Original modeling for interactive content sharing among clients)

<u>penalties</u>

- Exhaustion of capacity on edge servers
- work congestion
- Distance between a client and a home server

$$D = \frac{1}{M} \sum_{l=1}^{L} \sum_{m=1, c_m \in \mathcal{C}_l}^{M} \frac{1}{|\mathcal{U}_m|} \sum_{n=1}^{|\mathcal{U}_m|} (t_{mn} r_l \alpha + \psi(|\mathcal{C}_l|)(|\mathcal{C}_l| - C_{max})\beta + d_{ml} \gamma)$$

2. Algorithm Construction which minimize delay D

Policy : Minimize delay for content transmission by efficient resource use

1. Formulation of delay for content delivery

(Original modeling for interactive content sharing among clients)

<u>penalties</u>

- Exhaustion of capacity on edge servers
- work congestion
- Distance between a client and a home server

$$D = \frac{1}{M} \sum_{l=1}^{L} \sum_{m=1, c_m \in \mathcal{C}_l}^{M} \frac{1}{|\mathcal{U}_m|} \sum_{n=1}^{|\mathcal{U}_m|} (t_{mn} r_l \alpha + \psi(|\mathcal{C}_l|)(|\mathcal{C}_l| - C_{max})\beta + d_{ml} \gamma)$$

2. Algorithm Construction which minimize delay D

Policy : Minimize delay for content transmission by efficient resource use

1. Formulation of delay for content delivery

(Original modeling for interactive content sharing among clients)

<u>penalties</u>

- Exhaustion of capacity on edge servers
- work congestion
- Distance between a client and a home server

$$D = \frac{1}{M} \sum_{l=1}^{L} \sum_{m=1, c_m \in \mathcal{C}_l}^{M} \frac{1}{|\mathcal{U}_m|} \sum_{n=1}^{|\mathcal{U}_m|} \left(t_{mn} r_l \alpha + \psi(|\mathcal{C}_l|)(|\mathcal{C}_l| - C_{max})\beta + d_{ml} \gamma \right)$$

2. Algorithm Construction which minimize delay D

Policy : Minimize delay for content transmission by efficient resource use

1. Formulation of delay for content delivery

(Original modeling for interactive content sharing among clients)

<u>penalties</u>

- Exhaustion of capacity on edge servers
- work congestion
- Distance between a client and a home server

$$D = \frac{1}{M} \sum_{l=1}^{L} \sum_{m=1, c_m \in \mathcal{C}_l}^{M} \frac{1}{|\mathcal{U}_m|} \sum_{n=1}^{|\mathcal{U}_m|} \left(t_{mn} r_l \alpha + \psi(|\mathcal{C}_l|) (|\mathcal{C}_l| - C_{max}) \beta + d_{ml} \gamma \right)$$

2. Algorithm Construction which minimize delay D

System Model

1. Deliver content via cloud server

 α times delay

Cost Model

Policy : Minimize delay for content transmission by efficient resource use

Proposed Method

RLCCA (Relation and Locality conscious Cooperative Client Assignment)

 \rightarrow Heuristics which decrease delay effectively

Relation Conscious (Step 2)

Extracting user-to-user connectivity as knowledge from Pub / Sub relationships

Aggregate cache by assigning highly relevant users to the same server

Relation Conscious (Step 2)

Relevant users refer to the same content cache

the cache consumption capacity of edge servers can be reduced

Simulation

Is the use of edge server resources more efficient

and content transmission delays reduced?

Metrics : Cost model of content delivery delay D

$$D = \frac{1}{M} \sum_{l=1}^{L} \sum_{m=1, c_m \in \mathcal{C}_l}^{M} \frac{1}{|\mathcal{U}_m|} \sum_{n=1}^{|\mathcal{U}_m|} (t_{mn} r_l \alpha + \psi(|\mathcal{C}_l|)(|\mathcal{C}_l| - C_{max})\beta + d_{ml}\gamma)$$

How much penalty is given to content delivery delay *D* due to excessive consumption of resources. The unit is ms (milli-seconds).

- Allocation to the nearest server
- Random Allocation

Scheme	Locality	Relation	Cooperation
LCA	\bigcirc	×	×
RLCA	\bigcirc	\bigcirc	×
RLCCA	\bigcirc	\bigcirc	\bigcirc

Result

	Number of content caches to be managed on the edge	
Requirement Ratio = Number of content caches that can be placed on the edge (Ratio of the number of contents requiring real-time delivery to the number that can be cached on the edge)		
 <u>penalties</u> Exhaustion of capacity edge servers 	/ On $\begin{pmatrix} 10 \\ -\bullet - NS \\ -\bullet - LCA \\ 0 \\ 6 \\ -\bullet - RLCA \\$	

- work congestion
- Distance between a client and a home server

Base content delivery delay : 5 ms

- The proposed method can reduce the delay by 55% than conventional method
- When developers limit the content to be managed on the edge server in advance, the content can be delivered with few delay *D*

References

[1] Q. Li, W. Shi, Y. Xiao, X. Ge, A. Pandharipande, "Content size-aware edge caching: a size-weighted popularity-based approach," in IEEE Global Communications Conference (GLOBECOM), Dec. 2018.

[2] J. Ahn, S. H. Jeon, H. Park, "A novel proactive caching strategy with community- aware learning in CoMP-enabled small-cell networks," IEEE Communication Let- ters, Vol. 22, No. 9, pp. 1918–1921, Sept. 2018.

[3] L. Hou, L. Lei, K. Zheng, X. Wang, "A Q-learning-based proactive caching strategy for non-safety related services in vehicular networks," IEEE Internet of Things Journal, Vol. 6, No.3, pp. 4512–4520, June 2019.

[4] N. Itoh, H. Kaneko, A. Kohiga, T. Iwai, H. Shimonishi, "Novel packet scheduling for supporting various real-time IoT applications in LTE networks," in IEEE International Workshop Technical Commitee on Communications Quality and Reliability (CQR), May 2017.

[5] T. Nagato, T. Tsutano, T. Kamada, Y. Takaki, C. Ohta, "Distributed key-value storage for edge computing and its explicit data distribution method," IEICE Transactions on Communications, Vol. E103.B, No.1, pp. 20–31, Jan. 2020.

Conclusion

Contribution

We propose content caching method by which content delivery with low-latency is realized considering edge server resource constraints

Approach

- 1. Formulate content delivery delay between publisher and subscriber considering edge server resource constraints
- 2. Propose heuristics RLCCA (Relation and Locality conscious

Cooperative Client Assignment)

Result

✓ Content delivery delay is decreased by 55% than existing methods

✓ When developers limit the content to be managed on the edge server in advance, the content can be delivered with few delay D

(Limitation of the content can be realized with previous methods)